BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Computational Simulations Provide New Insights for the Interaction of Cellulose With Ionic Liquids
Published: April 19, 2010
Posted: April 23, 2010

Developing effective pre-treatment methods for lignocellulosic biomass for production of biofuels is an active area of research. Room temperature ionic liquids are highly effective solvents for cellulosic biomass, but the dissolution mechanism is not well understood. Seema Singh and Hanbin Liu and co-workers at DOE's Joint BioEnergy Institute (JBEI) have used high performance computational simulations to investigate the mechanism of action of imidazolium acetate ionic liquids on cellulose. They found that the anionic component of the ionic liquids forms hydrogen bonds with cellulose that are three times stronger than those found in water. Furthermore the cationic species in the ionic liquids also play a pivotal role in the dissolution process through hydrophobic interactions with the polysaccharide chains of cellulose. This research opens new possibilities for rapid computational screening of a wide range of ionic liquids for pre-treatment processes. The research made use of leadership computing capabilities at the National Energy Research Scientific Computing Center (NERSC) and has just been published in the Journal of Physical Chemistry Section B.

Reference: Hanbin Liu, Kenneth L. Sale, Bradley M. Holmes, Blake A. Simmons and Seema Singh, "Understanding the Interactions of Cellulose with Ionic Liquids: A Molecular Dynamics Study," J. Phys. Chem. B, volume 114, pages 4293-4301 (April 1, 2010)

Contact: Susan Gregurick, SC-23.2, (301) 903-7672
Topic Areas:

  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Computational Biology, Bioinformatics, Modeling

Division: SC-33.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)