U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

New Tools for Understanding the Breakdown of Lignocellulosic Biomass
Published: April 12, 2010
Posted: April 23, 2010

Biomass is resistant to enzymatic breakdown into sugars needed for fermentation into renewable biofuels, requiring extensive pretreatment to make the biomass more amenable to bio-processing. Understanding this degradation process will enable design of more efficient approaches for converting plant material into biofuels. DOE research at the Universities of Notre Dame and of Illinois, Urbana-Champaign, has used confocal Raman imaging and mass spectrometry imaging to monitor structural and chemical changes in the of pretreatment of Miscanthus x giganteus, a potential energy crop. Raman images of samples treated with sodium hydroxide shows that lignin is completely removed at long processing time while the cellulose is largely undisturbed. Lignin is also removed preferentially from the interior surface of the cell wall. These results illustrate how even simple pretreatments can lead to spatially complex biological profiles due to differential rates of attack on the major components of the cell wall. The researchers also showed that laser desorption/ionization mass spectrometry and secondary ion mass spectrometry can be used to visualize and understand pretreatment induced chemical changes that affect the spatial distribution of several saccharides.

References: Chu, L., R. Masyuko, J. V. Sweedler, and P. W. Bohn. 2010. "Base-Induced Delignification of Miscanthus x Giganteus Studied by Three-Dimensional Confocal Raman Imaging," Bioresource Technology 101(13), 4919-4925. DOI: http://dx.doi.org/10.1016/j.biortech.2009.10.096. (Reference link)

Li, Z., P. W. Bohn, and J. V. Sweedler. 2010. "Comparison of Sample Pre-Treatments for Laser Desorption Ionization and Secondary Ion Mass Spectrometry Imaging of Miscanthus x giganteus," Bioresource Technology 101(14), 5578–5585. DOI: http://dx.doi.org/10.1016/j.biortech.2010.01.136. (Reference link)

Contact: Arthur Katz, SC-23.2, (301) 903-4932
Topic Areas:

  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging
  • Research Area: Research Technologies and Methodologies

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)