BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


New Insight Into How Iron Oxide Minerals Influence Transport of Uranium in Subsurface
Published: March 08, 2010
Posted: March 24, 2010

Iron-oxide minerals play a critical role in determining the mobility of subsurface contaminants such as uranium at DOE cleanup sites. Understanding how the surface reactivity of these minerals changes over time is critical to understanding uranium transport. Researchers funded by DOE and NSF at SLAC National Accelerator Laboratory and Stanford University have developed a new structural model that accounts for gaps in the mineral structure of ferrihydrite as it transforms to the more stable mineral hematite and shows that these gaps are likely to be important sites for the binding of contaminants such as uranium. Synchrotron-based studies led to a detailed analysis of the changes occurring in the mineral structure of ferrihydrite as it is converted to hematite. The research also produced new information about the interaction of microbes with these minerals and how these interactions influence the chemical form of uranium.

Reference: F. Marc Michel, Vidal Barrón, José Torrent, María P. Morales, Carlos J. Serna, Jean-François Boily, Qingsong Liu, Andrea Ambrosini, A. Cristina Cismasu, and Gordon E. Brown, Jr. "Ordered ferrimagnetic form of ferrihydrite reveals links among structure, composition, and magnetism," Proceedings of the National Academy of Sciences, 107: 2787-2792 (2010).

Contact: Robert T. Anderson, SC 23.1, (301) 903-5549
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Microbes and Communities

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)