U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Finding Rice Stress Response Genes to Improve Bioenergy Crops
Published: February 16, 2010
Posted: March 04, 2010

Production of fuels from dedicated perennial grass crops has the potential to decrease dependence on oil imports and release of climate-changing, greenhouse gasses. However, dedicated biofuel crops will need to be grown on large scales on marginal land over many years. Thus it will be necessary to utilize genetically improved varieties that can withstand diverse environmental stresses, such as salinity, flooding and drought, which are major constraints to crop production in many areas of the world. Researchers at the DOE Joint BioEnergy Institute (JBEI) have now developed a gene expression profiling approach to identify novel genes that confer tolerance to flooding stress in rice. Rice is used as a model for studies of perennial grasses such as switchgrass, one of the most promising of the grasses for large-scale production of biofuels. A set of 12 genes was identified that are regulated by a single gene that has an effect on several flooding response pathways. These genes can be classified into three functional groups each involved in a different metabolic response to stress. The research is published in the current issue of Plant Physiology.

Reference: Jung K-H, Seo Y-S, Walia H, Cao P, Fukao T, Canlas PE, Amonpant F, Bailey-Serres J, and Ronald PC. 2010. "The Submergence Tolerance Regulator Sub1A Mediates Stress-responsive Expression of AP2/ERF Transcription Factors," Plant Physiol January 27, 2010; 10.1104/pp.109.152157.

Contact: Cathy Ronning, SC-23.2, (301) 903-9549
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)