U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

New Insights on Gene Function and Regulation in Archaea
Published: February 01, 2010
Posted: February 10, 2010

The archaea occupy a unique position in the tree of life, appearing similar to bacteria but having some properties related to those found in plants, animals, and fungi. Many archaea possess novel metabolic capabilities enabling them to withstand extreme conditions of temperature and acidity that could be useful in addressing DOE missions. However, the archaea remain poorly characterized, which limits their current utility. Collaborating researchers at the DOE Joint Bioenergy Institute, the DOE Joint Genome Institute, and Israel's Weizmann Institute of Science have now generated the first in depth gene expression map for Sulfolobus solfataricus, an archaeon that grows optimally under highly acidic conditions at 80°C. This study provides valuable new information on gene function and regulation in S. solfataricus and enables further development of this organism as a sturdy new platform or source of biological parts for biofuel production.

Reference: Wurtzel, O., R. Sapra, F. Chen, Y. Zhu, B. A. Simmons, R. Sorek. 2010. "A Single-Base Resolution Map of an Archaeal Transcriptome," Genome Research 20:133-141.

Contact: Joseph Graber, SC-23.2, (301) 903-1239
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: DOE Joint Genome Institute (JGI)
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)