U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Understanding How Microbes Sequester Potentially Deadly Metabolites
Published: January 19, 2010
Posted: February 10, 2010

Living cells use precise control processes to regulate critical metabolic processes. Sometimes cells produce volatile or potentially damaging byproducts that need to be sequestered to protect the cells. Scientists at the University of California, Los Angeles-DOE Institute for Genomics and Proteomics have discovered the structure of an important type of microcompartment in microbial cells that enables ethanolamine to be metabolized without releasing the volatile intermediate, acetaldehyde. They determined the structures of the four proteins that make up the walls of the microcompartment and used this information to discover how the combined structures enable selective transport across the walls to protect the microbe from toxic damage. The understanding gained in the research could enable design of nanoparticles using proteins modified to enhance production of molecules for biofuels and other applications. The research has just been published in Science.

Reference: S. Tanaka, M.R. Sawaya and T.O. Yeates "Structure and mechanisms of a protein-based organelle in Escherichia coli" Science 2010 327(1) 81-84.

Contact: Roland F. Hirsch, SC-23.2, (301) 903-9009
Topic Areas:

  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)