BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

New Unifying Framework for Modeling Organic Atmospheric Aerosols
Published: December 14, 2009
Posted: December 18, 2009

Organic aerosols represent a major fraction of the climatologically important submicrometer aerosol mass in the atmosphere but they have proved challenging to understand and to include in models due to the complexity of these mixtures and of the processes that influence them. In a current Science article, a team of researchers led by DOE-funded scientist Jose-Luis Jimenez present a framework for interpreting the chemical transformations and physical characteristics common to organic aerosols from diverse human and natural sources. The team noted that as aerosols from these widely differing sources oxidize in the atmosphere, there are common progressions in important properties such as volatility, oxidation state, light absorption, and interaction with atmospheric water vapor or clouds. This framework holds promise for enabling scientists to build model descriptions of the behavior of this important atmospheric component.

Reference: Jimenez, J. L., et al. 2009. "Evolution of Organic Aerosols in the Atmosphere," Science 326, 1525.

Contact: Ashley Williamson, SC-23.1, (301) 903-3120
Topic Areas:

  • Research Area: Atmospheric System Research

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)