U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Advanced Light Source (ALS) Beamlines Shed New Light on DNA Damage Repair
Published: October 05, 2009
Posted: November 06, 2009

Double-strand breaks in DNA are particularly serious because they can lead to damage ranging from cell death in yeasts to cancer in humans. How these breaks get repaired is thus of great significance for cell biology and its practical applications. New research using small-angle x-ray scattering (SAXS) and x-ray diffraction stations at the ALS has just been published that helps explain how a key repair protein, Nbs1, guides the cellular response to double strand breaks and helps regulate the highly complex repair mechanism. A research team led by DOE scientist John Tainer of the Lawrence Berkeley National Laboratory used diffraction experiments to obtain structures of variants of Nbs1. SAXS experiments then were carried out that identified the shapes of three-protein complexes involving Nbs1 that carry out many of the steps in identifying and repairing double-strand DNA breaks. The research is published in the October 2 issue of Cell, with a preview article explaining its significance.

References: R. Scott Williams, et al., "Nbs1 Flexibly Tethers Ctp1 and Mre11-Rad50 to Coordinate DNA Double-Strand Break Processing and Repair", Cell, Volume 139, pages 87-99 (October 2, 2009).

Karl-Peter Hopfner, "Preview: DNA Double-Strand Breaks Come into Focus", Cell, Volume 139, pages 25-27 (October 2, 2009).

Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging
  • Research Area: Structural Biology Infrastructure
  • Research Area: Research Technologies and Methodologies

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)