BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Tree Mortality and Insights from a Decade of Climate Change Research
Published: November 02, 2009
Posted: November 06, 2009

Ongoing global climatic change is expected to result in longer and more frequent droughts. Recent drought in the western United States has been associated with widespread mortality of pine trees, but because the mechanism of action has been unclear it has been impossible to realistically account for such mortality in global climate models. Now, after 10 years of DOE-sponsored research, it has been determined that long-term drought reduces photosynthesis (carbon assimilation) in pine trees to such an extent that they become "carbon starved." As a result, they are not able to ward off other stresses, such as attack by bark beetles. This new insight into the mechanism of action of drought on tree health will allow global climate models to appropriately account for potential ecological effects of climatic change.

Reference: Breshears, D.B., Myers O.B., Meyer, C.W., Barnes, F.J., Zou, C.B., Allen, C.D., McDowell, N.G., Pockman, W.T.. (2009) Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. Frontiers in Ecology and the Environment 7:185-189.

Contact: Jeffrey S. Amthor, SC-23.1, (301) 903-2507
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Terrestrial Ecosystem Science

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)