U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Computational Chemistry Resolves a Key Step in the Detoxification of Toxic Mercury Compounds
Published: September 21, 2009
Posted: October 05, 2009

Organomercuric compounds such as methylmercury are highly toxic, often forming in mercury-contaminated environments. However these toxic compounds can be demethylated by a variety of naturally-occurring mercury resistant bacteria. The mechanism of a key step in the demethylation of methylmercury by a lyase enzyme known as MerB has now been revealed. A DOE-funded team led by Jerry M. Parks and Jeremy C. Smith of Oak Ridge National Laboratory, with collaborating scientists at several universities, has applied quantum chemical calculations to x-ray structural data for the MerB enzyme to model the demethylation step. Using computationally demanding density functional calculations, the reaction pathways for this process were elucidated and the portions of the enzyme that play a critical role in the demethylation process were identified. These results provide a foundation for seeking additional mutant versions of the enzyme as part of a strategy for optimizing biological remediation of organomercury contamination in the environment. The research is published in the September 23, 2009, issue of the Journal of the American Chemical Society

Contact: Susan Gregurick, SC-23.2, (301) 903-7672
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Microbes and Communities
  • Research Area: Computational Biology, Bioinformatics, Modeling

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)