U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Exploring the Role of Climate Model Quality in Detection and Attribution Studies
Published: August 24, 2009
Posted: August 27, 2009

Observed climate change represents a complex mixture of internally generated noise and responses to external forcing. "Fingerprint" studies, which seek to identify the causes of recent climate change, involve rigorous statistical comparisons of modeled and observed climate change patterns.  DOE sponsored scientists led by PI Santer in 2007 used a suite of 22 Coupled Climate Models in conjunction with satellite observations to indicate unambiguously that changes in atmospheric water vapor have a human "fingerprint." Their 2007 study adopted a democratic "one model, one vote" approach in which each of the 22 models received equal weight in the analysis despite large differences in the ability of the models to simulate important features of present-day climate.  The group calculated a total of 70 different metrics of model performance, repeating their original fingerprint analysis with various sets of "top ten" and "bottom ten" models.  They find that restricting the fingerprint analysis to "better" models does not affect the ability to identify a human-caused fingerprint in satellite records of water vapor changes.  This work links and highlights DOE's expertise in both climate model evaluation and climate change detection and attribution.

Reference: Santer, B. D., K. E. Taylor, P. J. Gleckler, C. Bonfils, T. P. Barnett, D. W. Pierce, T. M. L. Wigley, C. Mears, F. J. Wentz, W. Brüggemann, N. P. Gillett, S. A. Klein, S. Solomon, P. A. Stott, and M. F. Wehner. 2009. "Incorporating Model Quality Information in Climate Change Detection and Attribution Studies," Proceedings of the National Academy of Sciences 106(35), 14778–14783. DOI: 10.1073/pnas.0901736106. (Reference link)

Contact: Anjuli Bamzai, SC-23.1, (301) 903-0294; Renu Joseph, SC-23.1, 301-903-9237
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)