U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Common Mineral Alters Fate of Mercury in Contaminated Sediments
Published: August 24, 2009
Posted: August 27, 2009

Mercury (Hg) contamination is a significant environmental concern due to its toxicity and is one of the most challenging remediation challenges at DOE's Oak Ridge site.  Ionic mercury (Hg[II]) can be transformed by anaerobic bacteria in anoxic soils and sediments to methylmercury (MeHg), a potent neurotoxin.  MeHg accumulates in ecological food chains and can be readily detected in fish tissues in contaminated streams and rivers. Reducing the levels of Hg(II) in contaminated soils decreases the potential for forming MeHg.  Researchers at Rutgers University and Pacific Northwest National Laboratory show that Hg(II) can be reduced to elemental Hg(0) by magnetite, a mineral commonly found in anoxic sediments.  The results demonstrate a potentially important mechanism of Hg(II) reduction needed to better understand the fate of Hg in contaminated environments and improve predictions of MeHg production in anoxic sediments.   

Reference:  Environ. Sci. Technol., 2009, 43(14): 5307-5313 

Contact: Robert T. Anderson, SC 23.1, (301) 903-5549
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Microbes and Communities

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)