Observations indicate there was a significant shift in the mid-1970s from cooler to warmer tropical Pacific sea surface temperatures (SSTs), part of a pattern of basin-wide SST anomalies with impacts that extended globally. The cause of these SST anomalies has been a topic of scientific debate in the climate research community. In a recent paper, scientists at the National Center for Atmospheric Research and the Program for Climate Model Diagnosis and Intercomparison at Lawrence Livermore National Laboratory analyzed observations and climate model simulations showing that the 1970s climate shift in the Pacific was a combination of warming due to human-produced greenhouse gases superimposed on what was likely an internally-generated natural decadal fluctuation of the Pacific climate system. Determining the relative roles of human influence versus naturally-occurring internal variability is important for understanding observed climate fluctuations and for the new field of decadal climate prediction. This new field will attempt to estimate regional climate anomalies over the next several decades with contributions from both inherent climate variability and external forcing from human activities.
Reference: Meehl, G. A., A. Hu, and B.D. Santer, 2009: The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability, J. Climate, 22, 780--792.
Contact: Anjuli Bamzai, SC-23.1, (301) 903-0294
Topic Areas:
Division:
SC-33.1 Earth and Environmental Sciences Division, BER
BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER
Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]
Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]
Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]
Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]
Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]
List all highlights (possible long download time)