U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Comparing Genomes of Two Algae Strains Highlights Genes for Carbon Capture
Published: April 13, 2009
Posted: April 24, 2009

Scientists from the Monterey Bay Aquarium Research Institute, led by Alexandra Z. Worden, have decoded the genomes of two algal strains, highlighting the genes enabling them to capture carbon and maintain the delicate balance of carbon in the oceans.  The study sampled two geographically diverse isolates of the photosynthetic algal genus Micromonas: one from the South Pacific, the other from the English Channel. Surprisingly, the two isolates had about 90% of their genes in common compared to about 98% for humans and some primates.  Algae such as Micromonas were among the first cells on Earth to acquire the capacity to fix CO2 and use the energy from sunlight to generate biomass (the essential process of photosynthesis).  Worden said that the differences between these algae may make them more resilient compared to more closely related species, enabling them to better survive environmental change and their geographically diverse locations. These results help illuminate cellular processes that could be used to produce algae-derived biofuels. Scientists at DOE's Joint Genome Institute (JGI) played an essential role in the research by carrying out the DNA sequencing and participating in the interpretation of the results. These findings are published in the April 10 edition of the journal Science.

Contact: Daniel Drell, SC-23.2 (301) 903-4742
Topic Areas:

  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: DOE Joint Genome Institute (JGI)
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)