U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Genomics Improves Contaminant Transport Simulations
Published: March 09, 2009
Posted: March 27, 2009

Microbes profoundly affect the mobility of contaminants in the environment, but current transport models oversimplify predictions of microbial activity in situ. DOE-funded researchers at Pacific Northwest National Laboratory and the universities of Toronto and Massachusetts have coupled a genome-scale metabolic model of a uranium-reducing microorganism, Geobacter sulfurreducens, to the reactive transport code HYDROGEOCHEM to better predict the in situ bioremediation of uranium at the Rifle, Colorado, test site. This enabled the researchers to integrate field tests and laboratory investigations and to demonstrate important advances between current empirical methods of simulating microbial activity and the new genome-scale metabolic modeling approach. The new, genome-based approach better predicts the coupled physical, chemical, and biological processes influencing the mobility of contaminants in the environment. The approach can be extended to other natural environments and other microbes or microbial communities. It also demonstrates the importance of studying environmentally relevant microbes to describe important microbially mediated processes in the environment.

Reference: Microbial Biotechnology., 2009, 2 (2): 274-286.

Contact: Robert T. Anderson, SC-23.1, (301) 903-5549
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Computational Biology, Bioinformatics, Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)