U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Microbe to Metal Oxide Surface Binding Mechanism Provides Insight for Advancing Enzyme-Based Fuel Cell Research
Published: November 17, 2008
Posted: January 27, 2009

In an effort to advance the development of enzyme-based fuel cells, a team of geologists, biologists, and computer scientists from the Pacific Northwest National Laboratory (PNNL), The Ohio State University, and Virginia Tech screened 3 billion different polypeptides to investigate their ability to bind to hematite, a metal oxide that could serve as an electrode surface. The team discovered that a segment of polypeptides that is just 9 amino acids long is the motif that binds these polypeptides to the iron oxide hematite. Molecular dynamics simulations of the binding interactions revealed that the polypeptide flexibility is limited in a way that promotes the formation of hydrogen bonding between the polypeptide and the mineral surface. Because enzyme-based fuel cells could be more efficient at transferring electrons to an electrode surface than microbial fuel cells, it is important to understand the fundamental chemical and physical mechanisms of polypeptide binding to electrode surfaces. These results not only provide important insights into advancing enzyme-based fuel cell research, but they also have implications for understanding the interactions of microorganisms with iron oxides found in soils and the subsurface. This research was funded by the DOE Office of Basic Energy Sciences Geosciences Research Program, the DOE Office of Advanced Scientific Computing Research, and the National Science Foundation, and conducted at DOE's Environmental Molecular Sciences Laboratory user facility located in Richland, Washington.

Reference: Lower BH, RD Lins, ZW Oestreicher, TP Straatsma, MF Hochella, Jr., L Shi, and SK Lower. 2008. "In Vitro Evolution of a Peptide with a Hematite Binding Motif That May Constitute a Natural Metal-Oxide Binding Archetype." Environmental Science and Technology 42(10):3821-3827.

Contact: Paul Bayer, SC-23.1, (301) 903-5324
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Research Area: Microbes and Communities
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)