U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Microbe to Metal Oxide Surface Binding Mechanism Provides Insight for Advancing Enzyme-Based Fuel Cell Research
Published: November 17, 2008
Posted: January 27, 2009

In an effort to advance the development of enzyme-based fuel cells, a team of geologists, biologists, and computer scientists from the Pacific Northwest National Laboratory (PNNL), The Ohio State University, and Virginia Tech screened 3 billion different polypeptides to investigate their ability to bind to hematite, a metal oxide that could serve as an electrode surface. The team discovered that a segment of polypeptides that is just 9 amino acids long is the motif that binds these polypeptides to the iron oxide hematite. Molecular dynamics simulations of the binding interactions revealed that the polypeptide flexibility is limited in a way that promotes the formation of hydrogen bonding between the polypeptide and the mineral surface. Because enzyme-based fuel cells could be more efficient at transferring electrons to an electrode surface than microbial fuel cells, it is important to understand the fundamental chemical and physical mechanisms of polypeptide binding to electrode surfaces. These results not only provide important insights into advancing enzyme-based fuel cell research, but they also have implications for understanding the interactions of microorganisms with iron oxides found in soils and the subsurface. This research was funded by the DOE Office of Basic Energy Sciences Geosciences Research Program, the DOE Office of Advanced Scientific Computing Research, and the National Science Foundation, and conducted at DOE's Environmental Molecular Sciences Laboratory user facility located in Richland, Washington.

Reference: Lower BH, RD Lins, ZW Oestreicher, TP Straatsma, MF Hochella, Jr., L Shi, and SK Lower. 2008. "In Vitro Evolution of a Peptide with a Hematite Binding Motif That May Constitute a Natural Metal-Oxide Binding Archetype." Environmental Science and Technology 42(10):3821-3827.

Contact: Paul Bayer, SC-23.1, (301) 903-5324
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Research Area: Microbes and Communities
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)