U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Radiation Resistance of Microbe Could be Due to Activities of Hydrolase Proteins
Published: November 03, 2008
Posted: January 27, 2009

A research team from Brookhaven National Laboratory the University of Toronto and the Pacific Northwest National Laboratory used state-of-the-art nuclear magnetic resonance (NMR) spectroscopy capabilities at the William R.  Wiley Environmental Molecular Sciences Laboratory (EMSL), a DOE Scientific User Facility located in Richland, Washington, to probe the activity of a hydrolase protein from a microorganism that is highly resistant to radiation.  The microbe, Deinococcus radiodurans, can survive thousands of times more radiation exposure than a human, but the mechanism for this astounding resistance is not understood.  One mechanism could be that a group of proteins called Nudix hydrolases protect cells by binding to specific forms of cellular metabolites called nucleosides.  Using the NMR spectroscopic capabilities at EMSL, the research team was able to study the molecular binding of the Nudix hydrolase DR_0079, with nucleosides in real time.  Unlike other hydrolases, DR_0079 binds to nucleoside diphosphate and converts it into a form that cannot lead to mutations in deoxyribonucleic acid (DNA).  Understanding the molecular basis for the radiation resistant properties of D.  radiondurans could lead to strategies that protect humans from the effects of ionizing radiation, or to novel bioremediation strategies for DOE sites with radionuclide contamination.  The research was supported by the Office of Science, Genome Canada, the Ontario Research and Development Challenge Fund, and the National Institutes of Health Protein Structure Initiative. 

Reference: Buchko GW, O Litvinova, H Robinson, AF Yakunin, and MA Kennedy.  2008.  "Functional and Structural Characterization of DR_0079 from Deinococcus radiodurans, a Novel Nudix Hydrolase with a Preference for Cytosine (Deoxy)Ribonucleoside 5'-Di- and Triphosphates." Biochemistry  47:6571-82.

Contact: Paul Bayer, SC-23.1, (301) 903-5324
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Research Area: Microbes and Communities
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging
  • Research Area: Research Technologies and Methodologies

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)