BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Nanostructure-Initiator Mass Spectrometry Highlighted in Science and Nature
Published: November 03, 2008
Posted: January 27, 2009

Nanoscience and mass spectrometry have been combined to produce a new, high throughput method to determine the functions of biologically active molecules, e.g., identification of particular metabolites as evidence that a particular cellular energy pathway is active. Developed by Genomics:GTL scientists Gary Siuzdak and Trent Northern of the Scripps Institute and the Lawrence Berkeley National Laboratory, this new research tool is highlighted in a Perspective article in the September 19 issue of Science. The underlying technology called nanostructure-initiator mass spectrometry (NMIS) is also spotlighted in a Technology Feature article in the October 2 issue of Nature. The technique, called Nimzyme analysis, involves the tagging of the biological molecule(s) to be tested with a fluorous tag that gets embedded in the perfluorosiloxane "initiatior" compound that fill nanosized holes on a specially-prepared surface. This methods allows an array of many embedded molecules of interest to be exposed to a solution containing a specific enzyme or mixtures of other biological molecules of interest followed by a laser pulse or beam of ionizing energy. The irradiation vaporizes the material in the nanoholes, releasing the biological molecules for rapid analysis by mass spectrometer to determine any molecular changes in the florous tagged molecules. The approach has the potential for what the Science Perspective article characterized as "high throughput bioprospecting applications."

References:

Perspective: D. Curran, Science, 321, 1645 (based on article, T. R. Northen et al., Proc. Nat. Acad. Sci. U.S.A. 105, 3678 (2008)).

Technology Feature: N. Blow, Nature 455, 697-700

Contact: Arthur Katz, SC-23.2, (301) 903-4932
Topic Areas:

  • Research Area: Research Technologies and Methodologies

Division: SC-33.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)