BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Using Models to Identify the Role of Climate and Atmospheric Composition on Changes in the Lower Stratosphere
Published: July 14, 2008
Posted: July 23, 2008

Department of Energy (DOE)-funded scientists have shown that the Community Atmosphere Model Version 3 (CAM3) can reproduce a variety of large-scale changes observed in climate and chemical composition in the stratosphere when forced with the observed sea-surface temperatures and surface concentrations of long-lived trace gases and ozone-depleting substances. They also used the same model to differentiate the role of chemically active composition (ozone, methane, and chlorofluorocarbons) and CO2 observed trends in the stratosphere. The simulations indicate that changes in CO2 do not change the total ozone trend; however, CO2 changes do lead to important differences in ozone in the upper part of the stratosphere. In contrast, changes in surface methane concentration drive changes in the globally averaged total ozone column through changes in tropospheric and stratospheric ozone columns.The model is capable of reproducing trends in the age of tropical air that were found in other studies and suggests that the relation between the upward velocity and mean age of tropical air breaks down in the upper stratosphere, above 20 hPa, in association with isentropic mixing above that level. These simulations suggest that keeping methane and ozone-depleting substances at their 1970 levels would have a significant impact, indicating the potential importance of controlling methane emissions.

Reference: Lamarque J.-F., D.E. Kinnison, P.G. Hess, and F.M. Vitt. 2008. "Simulated lower stratospheric trends between 1970 and 2005: Identifying the role of climate and composition changes," J. Geophys. Res. 113 D12301, DOI:10.1029/2007JD009277

Contact: Anjuli Bamzai, SC-23.1, (301) 903-0294
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-33.2 Biological Systems Science Division, BER
      (formerly SC-23.1 Life Sciences Division, OBER)

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)