U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Practical Gas Sampling Method Enables Rapid Evaluation of all Major Dissolved Gases in Groundwater
Published: June 16, 2008
Posted: June 20, 2008

Researchers at the Oak Ridge National Laboratory recently developed a practical method to sample all major dissolved gases present in groundwater without the need for pumping groundwater to the surface or the need for multiple analytical methods to measure gas concentrations. Traditional dissolved gas sampling techniques in the field are labor intensive, time-consuming efforts. This new passive sampling technique requires little sampling effort, allowing researchers to quickly deploy, retrieve, and analyze gas samples from multiple locations. Concentrations of dissolved gases such as oxygen, hydrogen, nitrogen, carbon dioxide, methane, nitrous oxide, and carbon monoxide yield important information on microbial and chemical processes occurring in the subsurface. Microorganisms profoundly affect the transport of contaminants in the subsurface, and these methods can help identify which microbial processes are active in the subsurface. The sampling device is suspended in a well until it equilibrates with ambient conditions, and then it is removed for analysis in the laboratory. The technique is highly sensitive to trace levels of gases and can provide researchers and modelers with information on active microbial processes in the subsurface. Understanding which microbial processes are active at a specific field site will help in refining simulations of contaminant transport, understanding bioremediation, monitoring natural attenuation processes and devising new techniques to intercept and immobilize contaminants.

Reference: Environmental Science & Technology 42(10) 3766-3772, 2008.

Contact: Robert T. Anderson, SC-23.4, (301) 903-5549
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Microbes and Communities

Division: SC-23.1 Climate and Environmental Sciences Division, BER
      (formerly SC-23.4 Environmental Remediation Sciences Division, OBER)

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)