BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

SC Investigator’s New Approach to Capturing Multiprotein Complexes Highlighted in Journal of Proteome Research
Published: June 16, 2008
Posted: June 20, 2008

A LBNL project led by Dr. Mark Biggin has developed an enhanced approach to rapidly separate intact multiprotein complexes from cells. These multiprotein complexes, often called molecular machines, play critical roles in every aspect of the biochemistry of the cell but are often difficult to isolate and study intact. Traditionally, these complexes are captured using biological tags that are genetically and laboriously inserted into different proteins in the complex one at a time. The new approach eliminates the need for these tags. The “tagless” approach involves removing the cell’s soluble content followed by several gentle chromatographic steps that leave the complexes intact. The complexes are separated from one another based on properties such as electric charge and molecular weight. At the end of the process there is a high probability that only one complex is clustered in one or a small number of related fractions. Mass spectrometry is used to confirm the identity of the proteins. The separation approach is being automated, providing researchers with a new tool to rapidly determine how these complexes and their associated biological processes change in a microbe or a plant exposed to different environmental conditions or genetic modifications. This work was highlighted in the Journal of Proteome Research.

Contact: Arthur Katz, SC-23.2, (301) 903-4932
Topic Areas:

  • Research Area: Research Technologies and Methodologies

Division: SC-33.2 Biological Systems Science Division, BER
      (formerly SC-23.2 Medical Sciences Division, OBER)


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)