BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Dawn of a New Era of “Customized” Supercomputing Applications?
Published: May 19, 2008
Posted: June 06, 2008

One of the greatest challenges facing climate modelers is incorporating cloud-climate interactions accurately. Although cloud systems have been included in climate models in the past, they lack the details that could improve the accuracy of climate predictions. In a paper published in the May issue of the International Journal of High Performance Computing Applications, Office of Science (SC) funded researcher Michael Wehner and colleagues at the Lawrence Berkeley National Laboratory (LBNL) lay out the benefit of a new class of supercomputers for modeling climate conditions and understanding climate change. They are working with SC-funded scientist Dave Randall from Colorado State University to build a prototype system in order to run the new global cloud resolving model being developed at Colorado State University.

Wehner and colleagues set out to establish a practical estimate for building a supercomputer capable of creating climate models at 1-kilometer (km) scale. A cloud system model at the 1-km scale would provide rich details that are not available from existing models. Using the embedded microprocessor technology used in cell phones, iPods, toaster ovens and most other modern day electronic conveniences, the authors propose designing a cost-effective machine for running these models and improving climate predictions. This is a radical alternative that would cost substantially less to build and require less electricity to operate. LBNL has signed a collaboration agreement with Tensilica®, Inc. to explore such new design concepts for energy-efficient high-performance scientific computer systems.

Reference: Towards Ultra-High Resolution Models of Climate and Weather, Wehner et al. 2008: International Journal of High Performance Computing Applications 2008; 22: 149-165.


Contact: Anjuli Bamzai, SC-23.3, (301) 903-0294
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Cross-Cutting: Scientific Computing and SciDAC

Division: SC-33.1 Earth and Environmental Sciences Division, BER
      (formerly SC-23.3 Climate Change Research Division, OBER)


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)