BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Improved Method Developed to Assess Non-Local Climate Feedback
Published: March 10, 2008
Posted: March 17, 2008

One critical issue in climate dynamics is the feedback response of the atmosphere to its lower boundary forcing, e.g. changes in sea surface temperature (SST). This feedback response is usually difficult to quantify because of the overwhelming internal atmospheric variability that occurs independent of the lower boundary forcing. In the real world, climate feedback can be assessed only statistically using observational data. In contrast, climate feedbacks can be assessed dynamically using a climate model with ensemble experiments that are explicitly designed to suppress internal atmospheric variability.

In a study jointly sponsored by DOE, NSF and NOAA, published in the February issue of Journal of Climate, authors Liu et. al, describe a method that assesses the climate feedbacks and apply the technique to assess the feedback response of SST on surface heat flux in a simple ocean–atmosphere model that includes the exchange of heat between the atmosphere and ocean. Feedbacks could be local and non-local, e.g. those due to climate anomalies that are related to each other at large distances, typically thousands of kilometers. Results show that the model simulations capture the major features of non-local climate feedback as long as the spatial resolution of the model is not very large. The sampling error (the error caused by observing a sample instead of the whole population) is also found to increase significantly with the spatial scale of the atmospheric forcing and, in turn, the SST variability. These deficiencies call for further improvements in methods used to assess non-local climate feedbacks.

Reference: Zhengyu Liu, N. Wen and Y. Liu, 2008: On the Assessment of Nonlocal Climate Feedback. Part I: The Generalized Equilibrium Feedback Assessment. J. Climate, 21, 134-148.

Contact: Anjuli Bamzai, SC-23.3, (301) 903-0294
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-33.1 Earth and Environmental Sciences Division, BER
      (formerly SC-23.3 Climate Change Research Division, OBER)

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)