U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

New Technique for Analysis of Metabolic Flux in Microbial Communities
Published: February 04, 2008
Posted: February 20, 2008

A new approach has been developed by scientists at the Lawrence Berkeley National Laboratory to overcome the significant challenge of studying a microbe in its natural environment. The ability to develop biotechnology-based strategies for environmental remediation or bioenergy applications with microbes depends on understanding microbial metabolism under rapidly changing conditions. Moreover, the metabolism of a single microbe is difficult to selectively monitor in the presence of many other microbial community species The Lawrence Berkeley scientists engineered a reporter gene encoding the green fluorescent protein (GFP) into a microbe, then fed the microbe glucose labeled with the stable radioisotope carbon-13. Subsequent analysis of the metabolism of carbon-13 label from glucose into amino acid building blocks within the GFP reflected the metabolism of all the proteins in that microbe. This proof of concept of the technique lays the foundation for analysis of a range of metabolic activities within a specific microbe, rather than the entire microbial community in which it is found. The research was directed by Jay Keasling, with funding from the Genomics:GTL program in the Office of Biological & Environmental Research, and was published in the February 1, 2008, issue of the journal Analytical Chemistry.

Contact: Sharlene Weatherwax, SC-23.2, (301) 903-3213
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-23.2 Biological Systems Science Division, BER
      (formerly SC-23.2 Medical Sciences Division, OBER)


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)