U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Structural Studies by LBNL Researcher Provides Insights into Regulation of Bacterial Gene Expression
Published: July 03, 2006
Posted: August 02, 2006

Many microbes use two-component signal transduction as a method of information processing to control their adaptive behaviors in response to changes in the environment. The transmitter component receives the initial signal and modifies the receiver domain of the second component, called a response regulator; the signal pathway is then turned on or off by the status of the response regulator. Microbial nitrogen assimilation and metabolism is regulated by this type of two-component signal relay, with the NtrC response regulator controlling nitrogen scavenging pathways and nitrogen fixation. Featured on the cover of the June 1, 2006, issue of Genes and Development, LBNL investigator Professor Eva Nogales and colleagues report x-ray and electron microscopy structural biology studies of NtrC that provide new insights into the mechanism of regulation of bacterial transcription and gene expression. When activated by phosphorylation of its receiver domain, NtrC assembles into a donut-like hexameric ring that encloses and binds to regulatory promoter DNA sequences. The resulting conformational change in the molecular machine that produces mRNA, s54-RNA polymerase, thereby activates the entire polymerase machinery to initiate transcription of the required nitrogen assimilation genes, to produce a metabolic response to the original signal about the cells nutrient status. This new model suggests that conformational dynamics are crucial for understanding how a transcriptional activator interacts with RNA polymerase to regulate gene expression.

Reference: Sacha De Carlo, Baoyu Chen, Timothy R. Hoover, Elena Kondrashkina, Eva Nogales, and B. Tracy Nixon (2006) The Structural Basis for Regulated Assembly and Function of the Transcriptional Activator NtrC, Genes & Dev 20 (11):14851495.

Contact: Arthur Katz, SC-23.2, (301) 903-4932
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging

Division: SC-23.2 Biological Systems Science Division, BER
      (formerly SC-23.2 Medical Sciences Division, OBER)

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)