U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


An Integrated Model of Microbial Stress Response.
Published: June 12, 2006
Posted: June 28, 2006

Lawrence Berkeley National Laboratory (LBNL) investigators Aindrila Mukhopadhyay, Adam Arkin, and Jay Keasling, together with co-investigators on the LBNL Virtual Institute of Microbial Stress and Survival (VIMSS) project, discover key clues to how the microbe Desulfovibrio vulgaris Hildenborough adapts its physiology to enable survival in habitats containing toxic and radioactive metal wastes and fluctuating hypersalinity. Using a variety of approaches such as transcriptomics, proteomics, metabolite assays, and electron microscopy, the VIMSS team applied a systems approach to explore the effects of a model stressor, excess NaCl, on D. vulgaris. They discovered that this microbe's coping mechanisms include importation of protective small molecules, the up-regulation of pump systems and the ATP synthesis (metabolic energy) pathway, changes in the stability of nucleic acids, changes in cell wall fluidity, and an increase in the activity of chemotaxis genes. The systems-level integration of data from multiple methods has led to a conceptual model for salt stress response in D. vulgaris that can now be compared to other microorganisms, leading to general, predictive models of microbial stress response and adaptation.

Reference: A. Mukhopadhyay, Z. He, E. Alm, A. Arkin, E. Baidoo, S. Borglin, W. Chen, T. Hazen, Q. He, H.-Y. Holman, K. Huang, R. Huang, D. Joyner, N. Katz, M. Keller, P. Oeller, A. Redding, J. Sun, J. Wall, J. Wei, Z.Yang, H.-C.Yen, J. Zhou, and J. Keasling (2006) Salt Stress in Desulfovibrio vulgaris Hildenborough: an Integrated Genomics Approach, J. Bact. 188 (11): 4068-4078.

Contact: Sharlene Weatherwax, SC-23.2, (301) 903-6165
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities

Division: SC-23.2 Biological Systems Science Division, BER
      (formerly SC-23.2 Medical Sciences Division, OBER)

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)