U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Estimated Climate Sensitivity Constrained by Temperature Reconstructions Over the Past Seven Centuries


Published: May 01, 2006
Posted: May 23, 2006

The magnitude and impact of future global climate change depends on the sensitivity of the climate system to changes in greenhouse gas concentrations. The commonly accepted range for the equilibrium global mean temperature change in response to a doubling of the atmospheric carbon dioxide concentration, termed climate sensitivity, is 1.5° - 4.5°C. A number of observational studies, however, find a substantial probability of significantly higher sensitivities, yielding upper limits on climate sensitivity of 7.7 °C to above 9°C. In the April 20 issue of Nature, DOE-sponsored researchers Hegerl et al. demonstrate that observational estimates of climate sensitivity can be tightened if reconstructions of Northern Hemisphere temperature over the past several centuries are considered. Using large-ensemble energy balance modeling to simulate the temperature response to past solar, volcanic and greenhouse gas forcing, they determine which climate sensitivities yield simulations that are in agreement with proxy reconstructions. After accounting for the uncertainty in reconstructions and estimates of past external forcing, they find an independent estimate of climate sensitivity that is very similar to those from instrumental data. If the latter are combined with the result from all proxy reconstructions, then the 5%-95 % range of climate sensitivity shrinks to 1.5 ° 6.2 °C, thus substantially reducing the probability of very high climate sensitivity.

Reference: Gabriele C. Hegerl, Thomas J. Crowley, William T. Hyde & David J. Frame: Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature, 2006|doi:10.1038/nature04679

Contact: Anjuli S. Bamzai, SC-23.3, (301) 903-0294
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER
      (formerly SC-23.3 Climate Change Research Division, OBER)

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)