U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


New Understanding of Role of Colloids in Contaminant Transport at Hanford
Published: February 07, 2005
Posted: March 29, 2005

Scientists at Washington State University (WSU) have published a research paper describing new results about the stability of natural colloids from the DOE Hanford Reservation. They found that these colloids do form stable suspensions that gradually aggregate into particles that settle out of suspension in the electrolyte solutions. They conclude that due to the very long travel times of water through the Hanford vadose zone most colloids will aggregate and be removed from the water column before reaching groundwater levels. Colloidal particles are a major concern at several DOE sites as they may facilitate transport of radionuclides that have been released into the subsurface environment at these sites. Significant transport could occur if the colloidal particles that contain radionuclides were to form colloid suspensions that are stable for a long enough period of time that water flowing through the area could move the suspension into an aquifer. The research team, led by Dr Markus Flury of the Center for Multiphase Environmental Research at WSU, studied the behavior of Hanford colloids in electrolyte solutions representative of the composition of waters in the Hanford vadose (unsaturated) zone. The research is funded by the Environmental Remediation Sciences Division of the Biological and Environmental Research program.

Contact: Roland F. Hirsch, SC-73, (301) 903-9009
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research

Division: SC-23.2 Biological Systems Science Division, BER
      (formerly SC-73 Medical Sciences Division, OBER)

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)