U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Long-term Ecosystem Research Highlights Fate of Nitrogen in Rainfall
Published: December 27, 2004
Posted: January 13, 2005

Department of Energy studies on Walker Branch Watershed in the Departments Oak Ridge (Tennessee) National Environmental Research Park showed that stream ecosystems can help prevent nitrogen pollutants from reaching downstream lakes, estuaries, and the ocean. Fossil fuel use is increasing the amount of nitrogen in rainfall in many parts of the United States, and inputs of this nitrogen to aquatic ecosystems can result in harmful algal blooms and drinking water contamination. Combining computer simulation and data from 12 years of field measurements, scientists at Oak Ridge National Laboratory found that biological organisms in streams removed about 20% of the nitrate nitrogen entering the stream from the watershed, thus reducing the concentration of nitrate exported downstream. The removal of nitrate nitrogen was highly seasonal; it was greatest in autumn (due to uptake by bacteria and fungi growing on newly fallen leaves trapped in the stream) and in early spring (due to high rates of uptake by algae before the stream becomes heavily shaded by new leaves in the deciduous forest overhead). These results are consistent with studies at the Hubbard Brook Experimental Forest (New Hampshire) and elsewhere showing that streams can reduce the downstream transport of nitrate nitrogen, and demonstrate the important role of streams in preventing high nitrate export and the eutrophication of downstream aquatic ecosystems. This study was recently documented in the journal Biogeochemistry.

Contact: Jeff Amthor, SC-74, (301) 903-2507
Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Microbes and Communities
  • Research Area: Computational Biology, Bioinformatics, Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER
      (formerly SC-74 Environmental Sciences Division, OBER)


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)