U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Draft Sequence of Marine Diatom Determined at JGI
Published: October 12, 2004
Posted: October 21, 2004

Diatoms are simple single-celled algae, covered with elegant and often very beautiful casings sculpted from silica. They share biochemical features of both plants and animals and are related to the organisms that make up the well known White Cliffs of Dover in England. A team of 45 biologists, lead by oceanographer Virginia Armbrust of the University of Washington in Seattle, and including members of the DOE Joint Genome Institute, has taken a big step toward resolving the paradoxical nature of these odd microbes. They have sequenced the genome of the marine diatom Thalassiosira pseudonana. The draft genome consists of 34 million bases on 24 chromosomes and is published in the October 1, 2004, issue of Science. The genome contains about 11,500 genes in all. Analyses of these genes and the proteins they encode confirm that diatoms, in their evolutionary history, apparently acquired new genes by engulfing microbial neighbors. Somewhere along this line, perhaps the most significant acquisition was an algal cell that provided the diatom with all the machinery necessary for photosynthesis. Diatoms date back 180 million years, and remnants of their silica shells make up a porous rock called diatomite that is used in industrial filters. Today diatoms occupy vast swaths of ocean and fresh water, where they play a key role in the global carbon cycle. Diatom photosynthesis yields 19 billion tons of organic carbon, about 40% of the marine carbon produced each year; by processing these amounts of carbon dioxide into solid matter, they represent a key defense against global warming. In addition, the newly analyzed genome is beginning to shed light on how a diatom constructs its intricately patterned glass shell. So far, a dozen proteins involved in the deposition of the silicon have been found and more are expected. Such progress could be a boon to materials scientists as well as climate change scientists.

Contact: Dan Drell, SC-72, 301-903-4742
Topic Areas:

  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: DOE Joint Genome Institute (JGI)

Division: SC-23.2 Biological Systems Science Division, BER
      (formerly SC-72 Life Sciences Division, OBER)


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)