BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


The Institute for Genomic Research Partners Complete Sequence of Corrosive Bacterium Desulfovibrio vulgaris
Published: April 19, 2004
Posted: April 28, 2004

A team of scientists led by the Institute for Genomic Research (TIGR) has sequenced the genome of Desulfovibrio vulgaris, a sulfate-reducing bacterium that can damage oil and natural gas pipelines and corrode oilfield equipment. The microbe takes part in a process called microbially influenced corrosion (MIC), in which bacteria act together to create a biofilm that covers metal pipelines or equipment. MIC has caused "staggering" economic losses at industrial sites around the world, according to TIGR. It is expected that analysis of the microbe's genes will help minimize such damage. In their analysis of the D. vulgaris genome, scientists found a network of c-type cytochromes-proteins that facilitate electron transfer and metal reduction during energy metabolism and are thought to give the organism a significant capacity for reducing metals. The organism could be used to help remediate metallic pollutants such as uranium and chromium, the researchers said. In addition to TIGR, the sequencing team included scientists from the University of Calgary, the University of Missouri-Columbia, Johns Hopkins University, and George Washington University Medical Center. The study, funded by the U.S. Department of Energy Microbial Genome Program, will be published in the May 2004 issue of Nature Biotechnology.

Contact: Dan Drell, SC-72, (301) 903-4742
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities

Division: SC-33.2 Biological Systems Science Division, BER
      (formerly SC-72 Life Sciences Division, OBER)

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)