U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Subsurface Microbial Community Stimulated to Immobilize Uranium Plume
Published: November 05, 2003
Posted: November 17, 2003

The first demonstration of a feasible process for the in situ immobilization of uranium as a bioremediation strategy was conducted by a team of scientists from the University of Massachusetts, the Pacific Northwest National Laboratory, the University of Tennessee, and several other institutions. Under field conditions, the team demonstrated that microorganisms can be stimulated to immobilize uranium in the subsurface. This interdisciplinary research was published in the October issue of Applied and Environmental Microbiology and featured in an on-line Science Update for the international journal Nature on October 13, 2003. The team conducted a two month field study and demonstrated that by adding acetate to the subsurface, they could stimulate the growth and proportion of Geobacter species within the subsurface microbial community. At the same time, the concentration of uranium (U) in the ground water was greatly reduced. During this first field experiment, uranium reduction was not maintained due to the onset of sulfate reduction and a corresponding change in the microbial community. However, a second field experiment has now successfully addressed the sulfate reduction problem by increasing the acetate concentration.

Contact: P. Bayer, SC-75, 3-5324
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Microbes and Communities

Division: SC-23.1 Climate and Environmental Sciences Division, BER
      (formerly SC-75 Environmental Remediation Sciences Division, OBER)


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)