BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Subsurface Microbial Community Stimulated to Immobilize Uranium Plume
Published: November 05, 2003
Posted: November 17, 2003

The first demonstration of a feasible process for the in situ immobilization of uranium as a bioremediation strategy was conducted by a team of scientists from the University of Massachusetts, the Pacific Northwest National Laboratory, the University of Tennessee, and several other institutions. Under field conditions, the team demonstrated that microorganisms can be stimulated to immobilize uranium in the subsurface. This interdisciplinary research was published in the October issue of Applied and Environmental Microbiology and featured in an on-line Science Update for the international journal Nature on October 13, 2003. The team conducted a two month field study and demonstrated that by adding acetate to the subsurface, they could stimulate the growth and proportion of Geobacter species within the subsurface microbial community. At the same time, the concentration of uranium (U) in the ground water was greatly reduced. During this first field experiment, uranium reduction was not maintained due to the onset of sulfate reduction and a corresponding change in the microbial community. However, a second field experiment has now successfully addressed the sulfate reduction problem by increasing the acetate concentration.

Contact: P. Bayer, SC-75, 3-5324
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Microbes and Communities

Division: SC-33.1 Earth and Environmental Sciences Division, BER
      (formerly SC-75 Environmental Remediation Sciences Division, OBER)

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)