U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Natural and Accelerated Bioremediation Research (NABIR) Highlighted at the Annual Meeting of the American Society of Microbiology (ASM)
Published: June 04, 2003
Posted: June 16, 2003

The ASM meeting, which drew over 15,000 attendees, was held in Washington, D.C., on May 19-22. NABIR funded research was presented in six invited talks and over 45 additional scientific papers. NABIR researchers reported their findings in a full-day session entitled Bioreduction of metals and bioremediation of metal-contaminated soils, as well as sessions on Subsurface microbiology, Environmental restoration microbiology, Molecular microbial ecology and others. Highlights included research by Dr. Joel Kostka (Florida State University) who has identified novel metal reducing microorganisms from acidic, contaminated subsurface sediments at the NABIR Field Research Center at the Oak Ridge Reservation. These microbes are unique and unrelated to any previously cultured metal reducers. Uranium and nitric acid were co-disposed at a number of DOE sites, so the identification of an acid-tolerant metal-reducing microbe is of great importance to bioremediation at those sites. Another highlight was a report by Dr. Ray Wildung (PNNL) on an interesting offshoot of his NABIR-funded research on reduction of the pertechnetate ion (Tc(VII)O4-) by Shewanella putrefaciens. The ion is widely used in imaging; however, the chemical reductant (SnCl2) used in commercial synthesis may result in a number of potentially undesirable competitive ions and reaction products. Dr. Wildung demonstrated the feasibility of using Shewanella isolated from a subsurface environment for an enzymatic reduction of Tc avoiding the potential problems and meeting the medical imaging requirements. Two government patents have been issued for the process and for a prototype kit for hospitals. This project exemplifies how basic research may impact several different fields; in this case, both environmental remediation and medical science.

Contact: Anna Palmisano, SC-75, 3-9963
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Microbes and Communities
  • Legacy: Medical Applications

Division: SC-23.1 Climate and Environmental Sciences Division, BER
      (formerly SC-75 Environmental Remediation Sciences Division, OBER)

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)