BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Replicating Subsurface Processes in the Laboratory
Published: October 10, 2019
Posted: August 11, 2020

October 10, 2018

The Science
Fluid flows with temperatures that are not constant are known as non-isothermal. Although changing thermal and hydrological conditions control rates of sediment biogeochemical processes in the Earth’s subsurface, these conditions are difficult to simulate in the laboratory. In this study, a novel 2 m–tall column system to control time- and depth-dependent temperature profiles and water saturation was developed, which is needed to more accurately reproduce subsurface processes in the laboratory.

The Impact
Temperature and moisture profiles in sediments are highly variable, and control biogeochemical processes, yet have not previously been reproduced in the laboratory. This study established field temperature and moisture profiles in a laboratory column system, and showed the importance of microbial respiration below the plant root zone by measuring carbon dioxide (CO2) production within the sediment column.

Summary
Transport between the soil surface and groundwater is commonly mediated through deeper portions of variably saturated sediments and the capillary fringe, where variations in temperature and water saturation strongly influence biogeochemical processes. Temperature control is particularly important because room temperature is not representative of most soil and sediment environments. The authors described and tested a novel sediment column design that allows laboratory simulation of thermal and hydrologic conditions found in many field settings. The 2.0 m–tall column was capable of replicating temperatures varying from 3 to 22°C, encompassing the full range of seasonal temperature variation observed in the deep, variably saturated sediments and capillary fringe of a semi-arid floodplain in western Colorado, United States. The water table was varied within the lower 0.8-m section of the column, while profiles of water content and matric (capillary) pressure were measured. CO2 collected from depth-distributed gas samplers under representative seasonal conditions reflected the influences of temperature and water-table depth on microbial respiration. Thus, realistic subsurface biogeochemical dynamics can be simulated in the laboratory through establishing column profiles that more accurately represent seasonal thermal and hydrologic conditions.

Contacts
BER Program Manager 
David Lesmes, SC-23.1, 301-903-2977

Principal Investigator
Susan Hubbard
Lawrence Berkeley National Laboratory
sshubbard@lbl.gov

Funding
This work was supported by the Office of Biological and Environmental Research within the U.S. Department of Energy Office of Science..

Publication
Tokunaga, T.K., Y. Kim, J. Wan, M. Bill, M. Conrad, and W. Dong, “Method for controlling temperature profiles and water table depths in laboratory sediment columns. Vadose Zone Journal 17(1),180085 (2018). [DOI:10.2136/vzj2018.04.0085].

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Subsurface Biogeochemical Research

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)