BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Hydrogen-Based Metabolism as an Ancestral Trait in Phyla Related to the Cyanobacteria
Published: January 28, 2019
Posted: August 10, 2020

June 20, 2019

The common ancestor of oxygenic Cyanobacteria may have been an anaerobe in which fermentation and hydrogen metabolism were central metabolic features.

The Science
Bacteria from multiple phyla related to Cyanobacteria were genomically described using metagenomics and single cell genomics, and genes were predicted for all genomes. Metabolic capacities, some featuring novel complexes, were predicted using genome-based analyses. Capacities were mapped across lineages to detect environment- and lineage-specific lifestyles.

The Impact
The results suggest that the common ancestor of all of the phyla investigated may have been an anaerobe in which fermentation and H2 metabolism were central metabolic features. Capacities of phylogenetic neighbors to Cyanobacteria (the group in which oxygenic photosynthesis arose), such as Margulisbacteria, Saganbacteria, Melainabacteria and Sericytochromatia, constrain the metabolic platform in which aerobic respiration arose. The evolution of aerobic respiration was likely linked to the origins of oxygenic Cyanobacteria.

Margulisbacteria (RBX-1 and ZB3), Saganbacteria (WOR-1), Melainabacteria, and Sericytochromatia, close phylogenetic neighbors to Cyanobacteria, may constrain the metabolic platform in which aerobic respiration arose. In this study, the authors predict that sediment-associated Margulisbacteria have a fermentation-based metabolism featuring a variety of hydrogenases, a streamlined nitrogenase, and electron bifurcating complexes involved in cycling of reducing equivalents. The genomes of ocean-associated Margulisbacteria encode an electron transport chain that may support aerobic growth. Some Saganbacteria genomes encode various hydrogenases, and others may have the ability to use O2 under certain conditions via a putative novel type of heme copper O2 reductase. Similarly, Melainabacteria have diverse energy metabolisms and are capable of fermentation and aerobic or anaerobic respiration. The ancestor of all of these groups may have been an anaerobe in which fermentation and H2 metabolism were central metabolic features. The ability to use O2 as a terminal electron acceptor must have been subsequently acquired by these lineages.

BER Program Manager
Paul Bayer
Department of Energy

Principal Investigator
Jill F. Banfield
University of California, Berkeley

This work was supported by the Office of Biological and Environmental Research within the U.S. Department of Energy Office of Science.

P. B. Matheus Carnevali, F. Schulz, C. J. Castelle, R. S. Kantor, P. M. Shih, I. Sharon, J. M. Santini, M.R. Olm, Y. Amano, B.C. Thomas, K. Anantharaman, D. Burnstein, E. D. Becraft, R. Stepanauskas, T. Woyke, and J. F. Banfield, “Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria.” Nature Communications 10, 463 (2019). [DOI:10.1038/s41467-018-08246-y].

Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)