BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


The Response of Stomatal Conductance to Seasonal Drought in Tropical Forests
Published: September 03, 2019
Posted: July 08, 2020

Understanding sources of variation in plant water-use efficiency.

The Science
Stomata regulate carbon dioxide (CO2) uptake by photosynthesis and water loss through transpiration. Accurate model representation of this process, called stomatal conductance, is therefore key for modeling CO2 and water fluxes. The approaches used to represent stomatal conductance in models vary. Current understanding of the drivers of the variation in a key parameter in those models—the slope parameter, which is a measure of plant water-use efficiency—is still limited, particularly in the tropics. Scientists from Brookhaven National Laboratory and the Next-Generation Ecosystem Experiments (NGEE)–Tropics team evaluated the ability of current model formulations to predict observed stomatal conductance, including the inclusion of leaf water potential, and investigated the sources of variation in the slope parameter. They found that inclusion of leaf water potential did not improve model predictions and that model formulations that included vapor pressure deficit performed better than those that relied on relative humidity.

The Impact
Although the value of stomatal slope can have a large impact on simulated carbon and water fluxes, the understanding of what drives the variation in slope parameter is still limited. This study presents a novel integration of rare measurements of gas exchange from the upper canopy of a tropical forest in Panama and a suite of plant traits with analysis that advances the understanding of dominant drivers of stomatal slope variability and identifies a practical, trait-based approach to improve modeling of carbon and water exchange in tropical forests.

Summary
Stomatal slope is inferred from an example stomatal conductance model. For a given CO2 assimilation rate, atmospheric CO2 concentration, and leaf-to-air vapor pressure deficit (collectively, the x-axis), a higher slope means that plants maintain a higher stomatal conductance (y-axis) for a given photosynthetic rate. As such, the slope parameter is an indicator of plant water use efficiency, and a greater slope equates to a lower water use efficiency. The team performed diurnal gas exchange measurements (resulting in background scatterplots) for two example species (Ventilago ferruginea and Terminalia amazonia).

Contacts
BER Program Manager
Daniel Stover
U.S. Department of Energy Office of Science, Office of Biological and Environmental Research
Earth and Environmental Systems Sciences Division (SC-33.1)
Environmental System Science
daniel.stover@science.doe.gov

Principal Investigator
Alistair Rogers
Brookhaven National Laboratory
Upton, NY
arogers@bnl.gov

Funding
This work was funded by the Next-Generation Ecosystem Experiments (NGEE)–Tropics project in the Terrestrial Ecosystem Science (TES) program of the Office of Biological and Environmental Research (BER), within the U.S. Department of Energy (DOE) Office of Science.

Publications
Wu, J., S. P. Serbin, K. S. Ely, B. T. Wolfe, L. T. Dickman, C. Grossiord, S. T. Michaletz, A. D. Collins, M. Detto, N. G. McDowell, S. J. Wright, and A. Rogers. “The response of stomatal conductance to seasonal drought in tropical forests.” Global Change Biology 26(2), 823–39. (2020). [DOI:10.1111/gcb.14820].

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Next-Generation Ecosystem Experiments (NGEE)

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)