BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Alder Distribution and Expansion Across a Tundra Hillslope: Implications for Local Nitrogen Cycling
Published: October 16, 2019
Posted: July 08, 2020

Symbiotic nitrogen fixation by alder shrubs influences the availability of a key limiting nutrient in tundra ecosystems.

The Science
Inputs of nitrogen by alder, a deciduous shrub that associates with nitrogen-fixing bacteria, were quantified in two tundra plant communities, and the ecosystem-scale effects on nitrogen cycling were assessed. The results from this study demonstrate that tall alder shrubland communities had high nitrogen inputs that were associated with high levels of available nitrogen in adjacent soils and plant communities. These tall alder shrublands can be identified in satellite and aerial imagery and have expanded their range during the last half century.

The Impact
Aerial imagery collected from 1956 to 2014 indicated that alder shrublands at this study site expanded 40%, and researchers from Oak Ridge National Laboratory (ORNL) and the Next-Generation Ecosystem Experiments (NGEE)–Arctic team calculated that this expansion may have increased nitrogen inputs by 22%. These findings suggest quantifying nitrogen fixation at the landscape scale is feasible and important for predicting future nutrient availability of warming tundra ecosystems.

Summary
Primary productivity of tundra plants is strongly limited by nitrogen availability, so plants capable of symbiotic nitrogen fixation have the potential to alter plant, soil, and microbial interactions in rapidly warming Arctic ecosystems. The ORNL research team, therefore, investigated the impact that alder, a nitrogen-fixing deciduous shrub, has on tundra nitrogen cycling at a hillslope located on Alaska’s Seward Peninsula. The team quantified nitrogen fixation in two distinct alder communities at this site: tall-statured alder shrublands located on well-drained, rocky outcroppings in the uplands and relatively short statured alder savannas located in water tracks along the moist toe slope of the hill. Annual nitrogen fixation rates in alder shrublands were 1.95 ± 0.68 grams of nitrogen (g N) per m2 per year, leading to elevated nitrogen levels in adjacent soils and plants. Alder savannas had lower nitrogen fixation rates (0.53 ± 0.19 g N per m2 per year), perhaps due to low phosphorus availability and poor drainage in highly organic soil profiles underlain by permafrost. In addition to supporting higher rates of nitrogen fixation, alder shrublands had different foliar traits than alder in savannas, providing an opportunity to link estimates of nitrogen fixation to remotely sensed data products. Analysis of historic aerial and satellite imagery showed that the area covered by alder shrublands at this hillslope site has increased by 40% from 1956 to 2014. The team estimates this increase was associated with a 22% increase in nitrogen inputs from fixation. Study results suggest that expansion of alder shrublands has the potential to substantially alter nitrogen cycling in upland tundra regions. An improved understanding of the consequences of nitrogen fixation within nitrogen-limited tundra plant communities will, therefore, be crucial for predicting the biogeochemistry of warming Arctic ecosystems.

Contacts
BER Program Manager
Daniel Stover
U.S. Department of Energy Office of Science, Office of Biological and Environmental Research
Earth and Environmental Systems Sciences Division (SC-33.1)
Environmental System Science
daniel.stover@science.doe.gov

Principal Investigator
Verity G. Salmon, R&D Associate
Oak Ridge National Laboratory
Environmental Science Division; Climate Change Science Institute
Oak Ridge, TN 37831
salmonvg@ornl.gov

Funding
This work is supported (in part) by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725, with the U.S. Department of Energy (DOE) Office of Science and by the Next-Generation Ecosystems Experiments (NGEE)–Arctic project in the Terrestrial Ecosystem Science program of the Office of Biological and Environmental Research (BER), within the DOE Office of Science.

Publication
Salmon, V. G., et al. “Alder distribution and expansion across a tundra hillslope: Implications for local N cycling.” Frontiers in Plant Science 10, 1099 (2019). [DOI:10.3389/fpls.2019.01099].

Related Links

  • Verity Salmon, Colleen Iversen, Amy Breen, Holly Vander Stel, and Joanne Childs. 2019. NGEE-Arctic Plant Traits: Plant Biomass and Traits, Kougarok Road Mile Marker 64, Seward Peninsula, Alaska, beginning 2016. Next-Generation Ecosystem Experiments (NGEE)–Arctic Data Collection, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn. https://doi.org/10.5440/1346199.
  • Colleen Iversen, Verity Salmon, Amy Breen, Holly Vander Stel, and Stan Wullschleger. 2019. NGEE–Arctic Plant Traits: Soil Temperature and Moisture, Kougarok Road Mile Marker 64, Seward Peninsula, Alaska, beginning 2016. Next-Generation Ecosystem Experiments Arctic Data Collection, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn. https://doi.org/10.5440/1346195.
  • Verity Salmon, Colleen Iversen, Amy Breen, Joanne Childs, Holly Vander Stel, and Stan Wullschleger. 2019. NGEE–Arctic Plant Traits: Soil Nutrient Availability, Seward Peninsula, Alaska, beginning 2016. Next–Generation Ecosystem Experiments Arctic Data Collection, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn. https://doi.org/10.5440/1346201.
  • Verity Salmon and Colleen Iversen. 2019. NGEE–Arctic Plant Traits: Nodule Biomass, Kougarok Road Mile Marker 64, Seward Peninsula, Alaska, 2017. NGEE–Arctic Data Collection, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn. https://doi.org/10.5440/1493669.
  • Verity Salmon and Colleen Iversen. 2019. NGEE–Arctic Plant Traits: Nitrogen fixation, Kougarok Road Mile Marker 64, Seward Peninsula, Alaska, 2017–2018. NGEE–Arctic Data Collection, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn. https://doi.org/10.5440/1493688.

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Next-Generation Ecosystem Experiments (NGEE)

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)