BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Cultivating an Understanding of Microbial Diversity
Published: January 29, 2019
Posted: April 02, 2020

Plant diversity, soil structure, and seasonality all influence microbial diversity in soil.

The Science
Biodiversity protects ecosystems from stressors, increases ecosystem services, and promotes sustainability by enhancing resilience. Researchers studied how plant growth, agricultural management, and season influence the diversity of microbial communities. Within soil clumps called aggregates, scientists saw that smaller soil aggregates had more bacterial and fungal diversity than larger ones. They also found that microbial diversity increases with plant diversity and changes seasonally. Larger soil aggregates were less diverse. But they had communities of microbes, known as microbiomes, that are more sensitive to environmental changes over the course of seasons.

The Impact
Understanding what controls the diversity and function of soil microbes can help researchers better predict how productive and healthy soil will be. This information can also help scientists predict how climate and environmental changes will influence the soil. Land-management services might use this knowledge to enhance biodiversity and the benefits soil provides to society.

Within soil systems, microbes maintain nutrient cycling, influence plant productivity, enhance drought tolerance, and impact soil health and fertility. However, the ecological rules that reinforce soil biodiversity and microbial activities are not clearly defined at a microbial scale. This study helps close an important knowledge gap by investigating how the spatial structure of soil is vital to understanding the impact of microbiomes on ecosystem and biogeochemical services. Historically, researchers have examined microbial diversity in soils at ecosystem or landscape scales. In this study, researchers chose different size soil aggregates as a way to represent microbially relevant scales. Over years and seasons, soil aggregate turnover is dynamic and thereby structures soil microbial habitats. Temporal data from different size soil aggregates and three different bioenergy management systems revealed discrete microbial communities. This research is pertinent to evaluating how different management practices impact spatially discrete microbial communities in the soil. Management practices that increase plant diversity across growing seasons, the authors demonstrate, influence soil aggregate habitats and therefore increase microbial diversity. The study underscores the importance of including both spatial and temporal dynamics in investigations in order to fully understand microbial community assembly and persistence in soil.

BER Program Manager
Dawn Adin
U.S. Department of Energy Office of Science, Office of Biological and Environmental Research
Biological Systems Science Division (SC-23.2)
Foundational Genomics Research

PrincipaI Investigator
Kirsten Hofmockel
Pacific Northwest National Laboratory

This research was supported by the Office of Biological and Environmental Research, within the U.S. Department of Energy Office of Science, under award DE-SC0010775.

Upton, R. N., E. M. Bach, and K. S. Hofmockel. “Spatio-temporal microbial community dynamics within soil aggregates.” Soil Biology and Biochemistry 132, 58-68 (2019). [DOI:10.1016/j.soilbio.2019.01.016].

Topic Areas:

  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Microbes and Communities

Division: SC-33.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)