BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Near-Term Ocean Warming Around Antarctica Affects Long-Term Rate of Sea Level Rise
Published: January 16, 2018
Posted: November 20, 2019

Scientists investigate a threshold for rapid degradation in the West Antarctic Ice Sheet.

The Science
In the West Antarctic Ice Sheet, which is particularly susceptible to influencing sea levels, rates of mass loss are especially sensitive near the point at which a glacier or ice shelf transitions into a regime of self-sustained retreat. In this state, the effects of ocean warming and other changes are sustained by the dynamics of a retreating ice sheet, with the rate of glacier loss depending strongly on how quickly the ocean melts the ice shelf. These findings are thanks to a team's research into the processes that regulate basin-wide ice mass loss.

The Impact
The portions of the West Antarctic Ice Sheet that rest over water contain enough vulnerable ice to raise the global sea level by 3 meters (nearly 10 feet). Recent incursions of warmer water and mass loss from this region will be exacerbated by projected changes in global climate.

Summary
The rapid change now underway on Thwaites Glacier, located in the West Antarctic Ice Sheet, raises concern that a threshold for unstoppable grounding line retreat has been or is about to be crossed, after which further retreat is inevitable even in the absence of continued forcing. The grounding line is the point where the base of the glacier is on land. Beyond this point, the glacier is floating in the ocean. To examine processes regulating basin-wide ice mass loss from the West Antarctic Ice Sheet, researchers applied the high-resolution BISICLES ice-sheet model to capture realistic grounding line dynamics at 250-meter resolution. In a set of modeling experiments, they slowly ramped up ocean melting of the surrounding ice shelves to identify the point at which mass loss from melt may become self sustaining from a change in ice flow dynamics. In the experiments, this occurred at 13 meter/year melt and the system continued to lose mass until nearly all of the West Antarctic Ice Sheet is evacuated. The ice sheet is a critical player in global sea level rise. The study identifies an important characteristic of this change in flow regimes. Near the transition point, small differences in ocean forcing had a long-term effect on discharge rates. The team found that with only 0.5 meter/year additional forcing at the time the system is experiencing this flow transition, discharge rates were upwards of 50 percent higher for centuries. This result is due to the role of added forcing in creating steeper slopes at the grounding line that, in turn, cause higher discharge rates. This positive feedback for the Marine Ice Sheet Instability mechanism means that details concerning how the ocean forces ice sheets across the threshold for instability will be critical for determining long-term rates of sea level rise.

Program Manager
Renu Joseph
U.S. Department of Energy Office of Science, Office of Biological and Environmental Research
Climate and Environmental Sciences Division (SC-23.1)
Earth and Environmental Systems Modeling and Small Business Innovation Research
renu.joseph@science.doe.gov

Principal Investigator
Dan Martin
Lawrence Berkeley National Laboratory
dfmartin@lbl.gov

Funding
The U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research and Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing supported the research.

Publications
Waibel, M. S., C. L. Hulbe, C. S. Jackson, and D. F. Martin. "Rate of mass loss across the instability threshold for Thwaites Glacier determines rate of mass loss for entire basin." Geophysical Research Letters 45, 809 (2018). [DOI:10.1002/2017GL076470]

Related Links
BISICLES webpage: https://commons.lbl.gov/display/bisicles

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Cross-Cutting: Scientific Computing and SciDAC

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)