BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Unexpected Complexity: A 3D Look into Plant Root Relationships with Nitrogen-Fixing Bacteria
Published: June 13, 2018
Posted: November 19, 2019

Scientists develop a molecular map of metabolic products of bacteria in root nodules to aid sustainable agriculture.

The Science
By taking nitrogen out of the air and turning it into plant nutrients, some bacteria help plants like beans, peas, and clovers thrive. However, a recent study shows that the traditional view of this symbiotic relationship doesn't capture the entire picture. Scientists resolved a 3D map of the metabolic products of bacteria found in plant root nodules. This spatial perspective could help unravel the overall complexity of these highly interdependent organisms.

The Impact
As bacteria found in plant root nodules interact with legumes like soybeans, the nodules grow on the plants’ roots. In these nodules, bacteria convert atmospheric nitrogen into molecules that the plants need to grow. Understanding the metabolic processes occurring within these nodules is essential for developing more sustainable agricultural practices for food crops used all over the world.

Previous studies led scientists to believe the distribution of bacterially derived metabolic byproducts within the nodules was uniform. Scientists from the Environmental Molecular Sciences Laboratory (EMSL), a U.S. Department of Energy Office of Science user facility, joined with colleagues at the University of Missouri and George Washington University to dig deep into the metabolic structure of soybean root nodules. They used one of EMSL's high-field Fourier transform ion cyclotron resonance mass spectrometers to visualize the array of metabolites within the nodules. Of the approximately 140 regulating substances identified, some were located together in distinct anatomical compartments. A few, however, were more unevenly distributed throughout the middle of the nodule, where the bacteria reside. This discovery points to a previously unrecognized biochemical complexity in the nodules that is key for symbiotic plant-microbe interactions. Armed with this understanding, scientists can suggest ways to optimize crop production and sustainability.

Biological and Environmental Research Program Manager
Paul Bayer
U.S. Department of Energy Office of Science, Office of Biological and Environmental Research
Climate and Environmental Sciences Division (SC-23.1)
DOE Environmental Molecular Sciences Laboratory

Principal Investigator
Christopher Anderton
Environmental Molecular Sciences Laboratory  

This work was supported by the U.S. Department of Energy's (DOE's) Office of Science, Office of Biological and Environmental Research, including support of the Environmental Molecular Sciences Laboratory (EMSL), a DOE Office of Science user facility; the DOE Mickey Leland Energy Fellowship; University of Missouri's Gus. T. Ridgel Fellowship; George Washington Carver Fellowship; and the National Science Foundation Plant Genome Program.

Velickovic, D., B. J. Agtuca, S. A. Stopka, A. Vertes, D. W. Koppenaal, L. Paša-Tolic, G. Stacey, and C. R. Anderton. "Observed metabolic asymmetry within soybean root nodules reflects unexpected complexity in rhizobacteria-legume metabolite exchange." The ISME Journal 12, 2335 (2018). [DOI:10.1038/s41396-018-0188-8]

Related Links
Environmental Molecular Sciences Laboratory science highlight: Unexpected Complexity: A Three-dimensional Look into Plant Root Relationships with Nitrogen-fixing Bacteria

Environmental Molecular Sciences Laboratory website: 6-Tesla high-field Fourier transform ion cyclotron resonance mass spectrometer

Topic Areas:

  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)