BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Root Litter Decomposition Slows with Soil Depth
Published: October 01, 2018
Posted: October 22, 2019

Novel use of 13C to quantify how deeper root inputs affect soil carbon storage.

The Science
Clever use of 13C isotopes revealed that plant tissues decompose more slowly the deeper they are in the soil profile. The restriction to decay was breaking down the coarse root particulates into finer particles that bacteria can transform.

The Impact
These results help bolster strategies for enhancing soil carbon sequestration and sustainable bioenergy production based on promoting deeper rooting by plants. Model results suggested that the lack of root exudates in deep soil limits microbial processes.

Although over half of the world’s soil organic carbon (SOC) is stored in subsoils (>20 cm deep), there are few studies examining in situ decomposition in deep soils. Researchers at Lawrence Berkeley National Laboratory added 13C-labeled fine roots to three depths (15 cm, 55 cm, and 95 cm) in the soil of a Ponderosa pine forest in California. They measured the amount of root-derived carbon remaining over 6, 12, and 30 months, in different soil fractions and in microbial phospholipid fatty acids (PLFAs). Root decomposition in the first 6 months was similar among all depths but diverged significantly by 30 months because decomposition at 95 cm nearly stopped. Mineral associations were not the cause of slower decomposition at depth because similar amounts of applied root carbon were recovered in the dense fraction at all depths. The largest difference among depths was in the amount of root carbon recovered in the coarse particulate fraction, which was much greater at 95 cm (50%) than at 15 cm (15%). There was more fungal and gram-negative bacteria biomass in the surface soil, and these groups may have facilitated rapid breakdown of particulates; they preferentially incorporated the added root carbon relative to native SOC. Simulations of these soils using the CORPSE model, which incorporates microbial priming effects and mineral stabilization of SOC, reproduced patterns of particulate and mineral-associated SOC over both time and depth and suggested that a lack of priming by root exudates at depth could account for the slower breakdown of particulate root material.

BER Program Manager
Daniel Stover
U.S. Department of Energy Office of Science, Office of Biological and Environmental Research
Climate and Environmental Sciences Division (SC-23.1)
Terrestrial Ecosystem Science

Principal Investigator
Margaret Torn  
Lawrence Berkeley National Laboratory
Berkeley, CA 94720

This material is based on work supported by the Terrestrial Ecosystem Science program of the Office of Biological and Environmental Research (BER), within the U.S. Department of Energy Office of Science, under Contract No. DE AC02-05CH11231.

Hicks Pries, C. E., B. N. Sulman, C. West, C. O'Neill, E. Poppleton, R. C. Porras, C. Castanha, B. Zhu, D. B. Wiedemeier, and M. S. Torn. “Root litter decomposition slows with soil depth.” Soil Biology and Biochemistry 125, 103–14 (2019). [DOI:10.1016/j.soilbio.2018.07.002]

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)