BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Climate Change Will Result in Large Increase in Methane Emissions in Polygonal Tundra
Published: March 29, 2019
Posted: October 21, 2019

Methane emissions responded strongly to changes in temperature, atmospheric carbon dioxide, precipitation, and landscape-scale hydrology.

The Science
Scientists from the Next-Generation Ecosystem Experiments (NGEE)–Arctic project used ecosys, a mechanistic three-dimensional ecosystem model, to project how carbon dioxide (CO2) and methane (CH4) emissions at the NGEE–Arctic Utqiagvik polygonal tundra site will change over the 21st century. The model very accurately matched a wide range of NGEE–Arctic observations. CH4 emissions responded strongly to changes in temperature, atmospheric CO2, and precipitation, and they represent large potential radiative feedbacks with climate.

The Impact
Land models predict a wide range of potential permafrost tundra CO2 and CH4 emissions over the 21st century. In this study, a team of scientists from Lawrence Berkeley National Laboratory identified dominant processes responsible for variations of these emissions over time and space. They found that predicted increases in CO2 uptake were offset by large CH4 emissions, and that potential increases in drainage would decrease net CH4 emissions, highlighting the importance of landscape-scale hydrology for 21st century predictions.

Summary
Model projections of CO2 and CH4 emissions in permafrost systems vary widely between land models. In this study, the researchers used ecosys to examine how climate change will affect these emissions in a polygonal tundra site at Utqiagvik (formerly Barrow) Alaska. The model has been thoroughly tested against NGEE–Arctic thermal, hydrological, and biogeochemical observations. During the Representative Concentration Pathway (RCP) 8.5 climate change scenario from 2015 to 2085, rising air temperatures, atmospheric CO2, and precipitation (P) increased net primary productivity consistently with biometric estimates. Concurrent increases in heterotrophic respiration (Rh) were offset by increases in CH4 emissions. Both these increases were smaller if boundary conditions were altered to increase landscape drainage, highlighting the importance of these large-scale hydrological dynamics for carbon cycle predictions.

Contacts
BER Program Manager
Daniel Stover
U.S. Department of Energy Office of Science, Office of Biological and Environmental Research
Climate and Environmental Sciences Division (SC-23.1)
Terrestrial Ecosystem Science
daniel.stover@science.doe.gov

Principal Investigator
William J. Riley
Lawrence Berkeley National Laboratory
Berkeley, CA 94720
wjriley@lbl.gov

Funding
This research was supported by the Office of Biological and Environmental Research, within the U.S. Department of Energy Office of Science, under Contract No. DE-AC02-05CH11231 as part of the Next-Generation Ecosystem Experiments (NGEE)–Arctic project.

Publications
Grant, R. F., Z. A. Mekonnen, and W. J. Riley. "Modelling climate change impacts on an Arctic polygonal tundra. Part 2: Changes in CO2 and CH4 exchange depend on rates of permafrost thaw as affected by changes in vegetation and drainage." Journal of Geophysical Research-Biogeosciences 125(5), 1323–41 (2019). [DOI:10.1029/2018JG004645]

Topic Areas:

  • Research Area: Earth and Environment Systems Data Management
  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Next-Generation Ecosystem Experiments (NGEE)

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)