BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Published: May 09, 2019
Posted: August 21, 2019

Study provides country-specific urban area growth models and the first dataset on country-level urban extents under five future scenarios of socioeconomic change.

The Science
Researchers created a dataset on historic urban area growth using satellite observations and then developed models that project future growth at the country level. They used the models to project country-level urban extents under five different future scenarios of socioeconomic change through 2100.

The Impact
This new data set can be the foundation for various global change studies; for example, simulating urban sprawl, modeling multisector dynamics, and investigating the effects of urbanization on air quality and human health.

Summary
Better understanding of the potential growth of urban areas at the national and global levels is important for exploring the linkages between urban systems, other human systems, and the environment. In this study, researchers at the Department of Energy’s Pacific Northwest National Laboratory and Iowa State University developed urban area growth models for each country using the time-series dataset of global urban extents (1992–2013), and projected the future growth of urban areas under five Shared Socioeconomic Pathways (SSPs), which are reference pathways depicting plausible alternative trends in the evolution of society and ecosystems through 2100. Global urban area is projected to increase by roughly 40–67 percent under the five scenarios by 2050 relative to the base year of 2013, and this trend would continue to a growth ratio of more than 200 percent by 2100. Although developing countries would remain leading contributors to the increase of global urban areas in the future, they may exhibit different temporal patterns (i.e., plateaued or monotonically increasing trends). Our urban area dataset is the first country-level urban area projection consistent with the five SSPs, between 2013 and 2100. Several types of predictive global change studies can be built on this dataset, e.g., urban sprawl simulation, multisector dynamics modeling, and investigating the effects of urban growth on air pollution and public health.

Contacts
BER Program Manager
Bob Vallario
U.S. Department of Energy Office of Science, Office of Biological and Environmental Research
Climate and Environmental Sciences Division (SC-23.1)
Multisector Dynamics
bob.vallario@science.doe.gov

Principal Investigator
Mohamad Hejazi
Pacific Northwest National Laboratory
Mohamad.Hejazi@pnnl.gov

Funding
This work was supported by the U.S. Department of Energy Office of Science, as part of research in the MultiSector Dynamics, Earth and Environmental System Modeling Program, and the National Aeronautics and Space Administration’s Research Opportunities in Space and Earth Sciences Land Use Land Cover and INCA programs. Jiyong Eom was also supported by the Ministry of Environment of Korea through the Climate Change Correspondence Program.

Publication
Li, X., Y. Zhou, J. Eom, S. Yu, and G. R. Asrar. “Projecting global urban area growth through 2100 based on historical time-series data and future shared socioeconomic pathways.” Earth's Future 7, 351–62 (2019). [DOI: 10.1029/2019EF001152].

Related Links
Article

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Multisector Dynamics (formerly Integrated Assessment)

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)