BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Scavenging in the Dirt: How Microbes Take Up Scarce Nutrients
Published: January 24, 2019
Posted: May 22, 2019

Study identifies siderophores from soil samples, building fundamental understanding of how microbes obtain scarce nutrients from their environment.

The Science
Important compounds called siderophores help bacteria and fungi scavenge essential nutrients like iron from the soil. But how the microbes release and use these compounds remains murky. Few siderophores have been identified in nature. Now scientists have not only identified four major classes of siderophores from chalky soils for the first time, but they have also uncovered the strategies microbes use to gather iron when nutrients are scarce. 

The Impact
Soil has a diverse microbial ecosystem that includes many metabolic processes and products that remain to be discovered. Building a fundamental understanding of how enzymes, metabolites, and microbes interact in soil is key to predicting how these interactions shift in response to changing environmental conditions. This understanding could help farmers improve soils and increase crop yields.

Researchers at Oregon State University teamed with colleagues at Pacific Northwest National Laboratory and EMSL to study bacteria in chalky soils that are traditionally low in biosoluble iron. They wanted to evaluate the diversity of siderophores in nature and find a better way to detect these compounds. Using EMSL’s ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry at 21 Tesla, the scientists quickly and confidently detected and identified thousands of molecular features. They then employed two varying approaches to structurally characterize compounds that belong to four major siderophore classes. Their efforts helped identify the best method for studying these compounds and highlighted the diversity of siderophores produced by co-existing soil microbes. Each of these four classes possesses different chemical characteristics and ways of taking up nutrients. These differences likely contribute to fierce competition for iron within these chalky soils, shedding light on how microbes scavenge nutrients in other soils.

Program Manager
Paul Bayer
Department of Energy, Office of Science, Biological and Environmental Research

Principal Investigator
Rene Boiteau
Oregon State University

This work was supported by the U.S. Department of Energy’s Office of Science (Office of Biological and Environmental Research), including support of the Environmental Molecular Sciences Laboratory (EMSL), a DOE Office of Science User Facility.

Boiteau, R.M., S.J. Fansler, Y. Farris, J.B. Shaw, D.W. Koppenaal, L. Pasa-Tolic, and J.K. Jansson. “Siderophore profiling of co-habitating soil bacteria by ultra-high resolution mass spectrometry.” Metallomics 11,166-175 (2019). [DOI: 10.1039/C8MT00252E]

Topic Areas:

  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Research Area: Microbes and Communities

Division: SC-33 BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)