BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Weaker Land-Climate Feedbacks from Nutrient Uptake during Photosynthesis-Inactive Periods
Published: October 01, 2018
Posted: May 08, 2019

Standard land modeling approach to represent nutrient constraints leads to large biases in GHG emissions.

The Science
The role of terrestrial biogeochemical and plant processes on atmospheric composition is large and uncertain in Earth System Models. In particular, nutrient controls can have very large effects on photosynthesis and microbial processes, thereby affecting atmospheric CO2 and N2O levels. However, most land models participating in CMIP5 and CMIP6 ignore a widely observed phenomenon: plant nutrient uptake in the absence of photosynthesis. In this study, the Energy Exascale Earth System Model (E3SM) land model (ELMv1), which integrates the Equilibrium Chemistry Approximation, is used to represent nutrient competition between microbes, roots, and physical processes. The effects of applying this new approach is compared with the standard method for global carbon cycling (i.e., CO2) and nitrogen losses (i.e., N2O and nitrate leaching).

The Impact
The effects of root nutrient competition with microbes and abiotic processes during periods without photosynthesis is large. Nitrogen and phosphorus uptake during these periods are significant. Ignoring this plant uptake, as is commonly done in land models, leads to large positive biases in annual nitrogen cycles that would result in excessive positive terrestrial feedback (i.e. warming) in the coupled system.

Summary
Terrestrial carbon-climate feedbacks depend on two large and opposing fluxes—soil organic matter decomposition and photosynthesis—that are tightly regulated by nutrients. Earth system models (ESMs) participating in the Coupled Model Intercomparison Project Phase 5 represented nutrient dynamics poorly, rendering predictions of twenty-first-century carbon-climate feedbacks highly uncertain. Here, DOE-funded scientists use a new land model, the E3SM land model (ELM), to quantify the effects of observed plant nutrient uptake mechanisms missing in most other ESMs. In particular, the global role of root nutrient competition with microbes and abiotic processes is estimated during periods without photosynthesis. Nitrogen and phosphorus uptake during these periods account for 45 and 43%, respectively, of annual uptake, with large latitudinal variation. Globally, nighttime nutrient uptake dominates this signal. Simulations show that ignoring this plant uptake, as is done when applying an instantaneous relative demand approach, leads to large positive biases in annual nitrogen leaching (96%) and N2O emissions (44%). This N2O emission bias has a global warming potential (GWP) equivalent of ~2.4 PgCO2 yr-1, which is substantial compared to the current terrestrial CO2 sink. Such large biases will lead to predictions of overly open terrestrial nutrient cycles and lower carbon sequestration capacity. Both factors imply over-prediction of positive terrestrial feedbacks with climate in current ESMs.

Contacts (BER PM)
Dorothy Koch
Earth and Environmental System Modeling
Department of Energy, Office of Science, Biological and Environmental Research
Dorothy.Koch@science.doe.gov

(PI Contact)
William J. Riley
Lawrence Berkeley National Laboratory
wjriley@lbl.gov

Funding
This research was supported by the Office of Science, Office of Biological and Environmental Research of the US Department of Energy as part of the Energy Exascale Earth System Model (E3SM) project.

Publications
Riley, W., Q. Zhu, and J. Tang. "Weaker Land-Climate Feedbacks from Nutrient Uptake During Photosynthesis-Inactive Periods."  Nature Climate Change 8(11), 1002-1006 (2018).  [DOI:10.1038/s41558-018-0325-41]

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)