U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

The Potential of Agricultural Land Management to Contribute to Lower Global Surface Temperatures
Published: August 29, 2018
Posted: May 07, 2019

The Science
This study sought to understand the scale of global mean surface temperature reduction that is achievable by sequestering soil carbon on existing agricultural lands using known management changes.

The Impact
The results indicate that significant global temperature reductions, on the order of 0.1 to up to 0.25 degrees C are plausible by 2100 without expanding or contracting agricultural landcover and without disrupting agricultural production.

Removal of atmospheric carbon dioxide (CO2) combined with emission reduction is necessary to keep climate warming below the internationally agreed upon 2°C target. Soil organic carbon sequestration through agricultural management has been proposed as a means to lower atmospheric CO2 concentration, but the magnitude needed to meaningfully lower temperature is unknown. This study showed that sequestration of 0.68 Pg C year-1 for 85 years could lower global temperature by 0.1°C in 2100 when combined with a low emission trajectory [Representative Concentration Pathway (RCP) 2.6]. This is potentially achievable using existing agricultural management approaches, without decreasing land area for food production. Existing agricultural mitigation approaches could lower global temperature by up to 0.26°C under RCP 2.6 or as much as 25% of remaining warming to 2°C. This declines to 0.14°C under RCP 8.5. Results were sensitive to assumptions regarding the duration of carbon sequestration rates, which is poorly constrained by data. Results provide a framework for the potential role of agricultural soil organic carbon sequestration in climate change mitigation.

Contacts (BER PM)
Dorothy Koch
Earth and Environmental System Modeling
Department of Energy, Office of Science, Biological and Environmental Research

(PI Contact)
Andrew Jones
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Lab


  • Rathmann Family Foundation
  • EESM: Quantification of Land-use/Land Cover Change as Driver of Earth System Dynamics
Mayer, A.,  Z. Hausfather, A. Jones, W. Silver. “The Potential of Agricultural Land Management to Contribute to Lower Global Surface Temperatures.” Science Advances 4(8), eaaq0932 (2018). [DOI:10.1126/sciadv.aaq0932]

Related Links

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)