BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Integrating Human System Dynamics into Earth System Models
Published: June 20, 2018
Posted: April 30, 2019

A review of modeling research on two-way interactions between human and Earth systems sheds light on system interactions and informs directions for future Earth system modeling research.

The Science
Historically, Earth system models (ESMs) have considered only limited, one-way interactions with human systems and human system modeling, with key human-caused drivers of the Earth system (such as industrial emissions and land use changes) supplied by external models. Increasingly, however, researchers are exploring ways to more fully couple human systems models into ESMs as a means to explore a more comprehensive set of interactions, including impacts of the Earth system on human systems. Researchers at the U.S. Department of Energy’s Pacific Northwest National Laboratory surveyed a broad set of relevant literature on fully coupled models with two-way feedbacks between the human and Earth systems.

The Impact
This review quantifies key results emerging from the literature on feedbacks between coupled human and Earth system models. It identifies limitations in the current literature, such as the small number of studies, and outlines future research directions for better incorporating human system models and dynamics into ESMs.

Summary
In this review, researchers surveyed the literature on modeling approaches that include two-way feedbacks (i.e., interactions) between human and Earth systems and quantified the direction and strength of feedbacks emerging in those models. They then analyzed the feedbacks in context of other, more frequently considered feedbacks in the Earth system, including processes such as wildfire and permafrost thaw. Though the team found that such feedbacks have the potential to alter both human and Earth systems, the number of studies that incorporate two-way interactions remains small. Additional research, models, and studies are needed to robustly quantify the sign and magnitude of human-Earth system feedbacks. Integrating human systems into ESMs entails significant complexity and cost, and researchers should carefully assess the costs and benefits of doing so with respect to the object of study.

Contacts (BER PM)
Dorothy Koch
Department of Energy, Office of Science, Biological and Environmental Research
Earth System Modeling
Dorothy.Koch@science.doe.gov

(PI Contact)
Kate Calvin
Pacific Northwest National Laboratory
katherine.calvin@pnnl.gov

Funding
This research was supported as part of the Energy Exascale Earth System Model (E3SM) project, funded by the U.S. Department of Energy Office of Science, Biological and Environmental Research.

Publication
Calvin, K., and B. Bond-Lamberty. “Integrated Human-Earth System Modeling-State of the Science and Future Directions.” Environmental Research Letters 13(6), 063006 (2018). [DOI: 10.1088/1748-9326/aac642]
 

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)