U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


The Future of Natural Gas Infrastructure Development in the United States
Published: February 01, 2019
Posted: April 23, 2019

Existing pipelines may be insufficient to meet increasing natural gas demands.

The Science
Rapid changes in natural gas availability have resulted in significant shifts across the energy system and related sectors. At the same time, long-lived physical infrastructures such as natural gas pipelines are strongly influenced by time-evolving socioeconomic factors such as population changes, technological advances, and shifts in trade patterns. To examine these complex interactions and their implications for natural gas infrastructure development, a team of researchers from the U.S. Department of Energy’s Pacific Northwest National Laboratory and Johns Hopkins University coupled a domestic natural gas infrastructure investment model to a global human-Earth system model that simulates a wide range of other sectors. They found that the existing U.S. pipeline capacity is generally insufficient to satisfy increasing demands for natural gas, but that infrastructure investment needs vary substantially by region across different socioeconomic scenarios.

The Impact
Previous studies of natural gas infrastructure development have often failed to account for interactions with other sectors, which can span a wide range of spatial and temporal scales. This study highlights the need to account for these complex multi-sector, multi-scale processes when evaluating how infrastructure needs may evolve under multiple alternative scenarios. It also highlights some of the key interactions and factors that decision makers in the energy sector need to account for when making future infrastructure planning decisions.

Summary
Assessing future infrastructure development needs often requires a multi-sector perspective. For example, rapid population growth or an increase in liquified natural gas (LNG) exports could lead to increasing natural gas demands, while rapid shifts to renewable energy generation could suppress demand, and these effects would vary by region. In this study, researchers evaluated U.S. natural gas infrastructure investment needs across a range of future scenarios by coupling a global human-Earth system model with state-level detail in the United States (GCAM-USA) to a natural gas sector infrastructure investment model with updated data on the newest pipelines in North America (NANGAM). The team explored five future socioeconomic scenarios that resulted in a range of different domestic and international natural gas demand patterns. They found that existing domestic pipeline infrastructure is insufficient to satisfy increasing demand for natural gas in all five scenarios, implying that investments in additional pipeline capacity will be required. However, this result varied by region and by scenario. For example, the existing pipeline infrastructure in the Pacific region was sufficient to meet demand in a scenario with lower natural gas demands, but not in higher demand scenarios, while the mid-Atlantic region generally emerged as a new natural gas supply hub across all five scenarios. These results demonstrate the value of coupling multi-sector human-Earth system models with detailed sectoral models to illuminate complex system dynamics that can be used to inform decision making.

Contacts (BER PM)
Bob Vallario
Multisector Dynamics, Earth and Environmental Systems Modeling
Bob.Vallario@science.doe.gov

(PNNL Contact)
Gokul Iyer
Pacific Northwest National Laboratory
Gokul.Iyer@pnnl.gov

Ian Kraucunas
Pacific Northwest National Laboratory
Ian.Kraucunas@pnnl.gov

Funding
Research support was provided by the U.S. Department of Energy, Office of Science, as part of the Multisector Dynamics, Earth and Environmental System Modeling Program, and by the National Science Foundation under Grant #1745375 (EAGER: SSDIM: Generating Synthetic Data on Interdependent Food, Energy, and Transportation Networks via Stochastic, Bi-level Optimization).  

Publication
Feijoo F, G Iyer, C Avraam, SA Siddiqui, LE Clarke, S Sankaranarayanan, MT Binsted, PL Patel, NC Prates, E Torres-Alfaro, and MA Wise. “The future of natural gas infrastructure development in the United States.” Applied Energy 228, 149-166 (2018). [DOI:10.1016/j.apenergy.2018.06.037]

Related Links

Benefit-Cost Integrated Assessment Modelling for Climate Change Mitigation: a critical review of its usefulness in the presence of Detailed-Process models

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Multisector Dynamics (formerly Integrated Assessment)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)