BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Modeling with Multiple Models Made Easy
Published: August 10, 2018
Posted: April 23, 2019

New code allows scientists to generate and analyze multiple models that vary in how processes are represented.

The Science 
Researchers developed a new modeling software package that allows many alternative models to be posed, run, and analyzed as an ensemble, saving scientists time and providing a path to decrease uncertainty in modeling analyses.

The Impact
There are many ways to represent real-world processes in computer models. But it is common that only a single representation is used in any given model, leading to results that are model specific. This new code now allows the modeling community to move away from the single-representation method to using many alternative models in a single study for a richer analysis that more broadly encompasses the current state of knowledge about ecosystem processes.

Alternative ways that real-world processes can be represented in computer models is a huge source of uncertainty in model output. Yet, tools and modeling systems to examine these alternatives are not available. Researchers at Oak Ridge National Laboratory and a team of national and international collaborators have developed software that can combine alternative ways to represent many real-world processes into a complete set of all possible combinations of the alternatives. This will give a full range of possible model results and goes beyond the single-instance approach to running models. The software also includes novel tools for analysis of model sensitivity to alternative process models.

BER Program Managers
Daniel Stover
Terrestrial Ecosystem Science

Dorothy Koch
Earth and Environmental System Modeling

Principal Investigator
Anthony P. Walker
Oak Ridge National Laboratory
Oak Ridge, TN 37831

Oak Ridge National Laboratory Terrestrial Ecosystem Science Scientific Focus Area and Next-Generation Ecosystem Experiments (NGEE)–Tropics project by the Office of Biological and Environmental Research within the U.S. Department of Energy (DOE) Office of Science.

Walker, A. P. et al. “The multi-assumption architecture and testbed (MAAT v1.0): R code for generating ensembles with dynamic model structure and analysis of epistemic uncertainty from multiple sources.” Geoscientific Model Development 11(8), 3159–3185 (2018). [DOI:10.5194/gmd-11-3159-2018]

Related Links

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Next-Generation Ecosystem Experiments (NGEE)

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)