BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Seeing the Vegetation Canopy from Wind Measurements
Published: August 24, 2018
Posted: April 22, 2019

Temporally dynamic canopy heights derived from momentum flux data across AmeriFlux sites.

The Science
This study evaluates an innovative and robust method for deriving the canopy height, a key descriptor of the Earth surface, from continuously measured wind statistics and momentum fluxes. Researchers from the University of California, Berkeley show its applicability for tracking the temporal dynamics of vegetation canopies, including plant growth, harvest, land-use change, and disturbance.

The Impact
Networks of eddy covariance tower sites (i.e., meteorological observation towers with high-frequency measurements of wind speed and surface fluxes) have collected ~108 hours of turbulent flux data worldwide. This study demonstrates the great potential of the flux-derived canopy heights for providing a new benchmark for regional and global Earth system models (ESMs) and satellite remote sensing of canopy structure.

Summary
Vegetation canopy height is a key descriptor of the Earth surface and is in use by many modeling and conservation applications. However, large-scale and time-varying data of canopy heights are often unavailable. This synthesis evaluates the calculation of canopy heights from the momentum flux data measured at eddy covariance flux tower sites. This study shows that the aerodynamic estimation of canopy heights robustly predicts the site-to-site and year-to-year differences in canopy heights across a wide variety of forests. The weekly canopy heights successfully capture the dynamics of vegetation canopies over growing seasons at cropland and grassland sites. These results demonstrate the potential of the flux-derived canopy heights for tracking the seasonal, interannual, and/or decadal dynamics of vegetation canopies including growth, harvest, land-use change, and disturbance. Given the amount of data collected and the diversity of vegetation covered by the global networks of eddy covariance flux tower sites, the flux-derived canopy height has great potential for providing a new benchmark for regional and global ESMs and satellite remote sensing of canopy structure.

Contacts
BER Program Manager
Daniel Stover
SC-23.1
Terrestrial Ecosystem Science
Daniel.Stover@science.doe.gov

Principal Investigator
Dennis Baldocchi
University of California, Berkeley
baldocchi@berkeley.edu

Housen Chu
Lawrence Berkeley National Laboratory
Berkeley, CA 94720
hchu@lbl.gov

Funding
This study is supported by FLUXNET and AmeriFlux Management Project, hosted by the Lawrence Berkeley National Laboratory, which is sponsored by the U.S. Department of Energy Office of Science (DE-SC0012456 and DE-AC02-05CH11231).

Publications
Chu, H. et al. “Temporal dynamics of aerodynamic canopy height derived from eddy covariance momentum flux data across North American Flux Networks.” Geophysical Research Letters 45(17), 9275–9287 (2018). [DOI:10.1029/2018GL079306]

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)